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Abstract. We study the influence of a tunnel barrier on the quantum transport through a circular cavity.
Our analysis in terms of classical trajectories shows that the semiclassical approaches developed for ballistic
transport can be adapted to deal with the case where tunneling is present. Peaks in the Fourier transform of
the energy-dependent transmission and reflection spectra exhibit a nonmonotonic behaviour as a function
of the barrier height in the quantum mechanical numerical calculations. Semiclassical analysis provides
a simple qualitative explanation of this behaviour, as well as a quantitative agreement with the exact
calculations. The experimental relevance of the classical trajectories in mesoscopic and microwave systems
is discussed.

PACS. 73.23.Ad Ballistic transport – 03.65.Sq Semiclassical theories and applications

1 Introduction

Ballistic transport through quantum billiards has been
extensively studied in recent years due to its relevance
for quantum chaos and the possibility of physical applica-
tions. Realizations of ballistic billiards include structured
two-dimensional electron gases in semiconductor hetero-
structures [1,2] and, exploiting the analogy between quan-
tum and wave mechanics, microwave cavities [3]. Various
experiments have been designed to test theoretical ideas
on conductance fluctuations [4–6], weak localization [7–
10] and the signatures of classical integrability. The main
theoretical tool for making the connection between the
quantum and classical properties is the semiclassical ex-
pansion [11,12]. This intuitive and powerful approach has
been tested numerically for the transport through circu-
lar cavities [13–15]. In particular, the identification of the
most relevant trajectories for transmission and reflection
has been accurately demonstrated (analogously to the re-
lationship between the density of states and periodic or-
bits of closed systems [11]). Moreover, the semiclassical
approach has been extended by the inclusion of diffrac-
tion effects at the entrance and exit of the cavities [15].

In this work we further extend the applicability of
semiclassical methods in open systems to treat the case
where tunneling takes place. The modification of the trace
formula in a closed system by the inclusion of a potential
step has recently been addressed for a circular billiard
[16] in the context of ray splitting. There the possibility
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of electrons entering in the region of higher potential has
to be taken into account. Our work shows that a tunnel
barrier within a cavity can very simply be incorporated
in a semiclassical description and changes the relative im-
portance of different classical trajectories in a non-trivial
manner. Our interest in tunneling inside a cavity stems
from a fundamental point of view as well as from the fact
that experiments with a high potential barrier within a
quantum dot (pacman) have already been performed [17].
In microwave billiards tunnel barriers could be realized if
the cavity were filled with a dielectric except for a thin
slit which acts as a barrier.

Starting from the well-studied circular billiard [13–15],
we introduce a thin barrier placed symmetrically between
the two leads and extending from the edge to the center
of the circle as shown by the dashed line in Figure 1. The
barrier height Vb is variable and allows to interpolate be-
tween a circle and the billiard studied in reference [17]. Of
special interest will be the regime where the electron en-
ergy is of the order of the barrier height so that tunneling
becomes relevant. In the following, we therefore refer to
this billiard as the circular tunneling billiard.

We will consider phase coherent and ballistic trans-
port through the cavity which is attached to two hard-wall
leads of width W . For a fixed energy E of the incident par-
ticles there exists only a finite number of transverse modes
N , given by the largest integer smaller than (E/E0)1/2,
which contribute to the transport. Here,

E0 =
~2π2

2MW 2
(1)
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Fig. 1. The circular tunneling billiard consists of a circular
billiard of radius R attached to two opposite leads of width W
and a thin potential barrier of variable height shown as dashed
line reaching from the edge to the center of the circle.

is the energy of the lowest transverse mode in the leads
and M is the mass of the particles.

Within the Landauer formalism [1,2] the two-probe
conductance g through the structure is just proportional
to the total transmission coefficient T at the Fermi energy
EF

g =
e2

h
T =

e2

h

∑
n,m

|tnm|
2. (2)

The transmission amplitude connecting the incoming
mode m to the outgoing mode n is given by the projection
[18,19]

Gnm(x′, x, EF ) =∫ W

0

∫ W

0

dy′dy G(x′, y′, x, y, EF )χn(y′)χm(y) (3)

of the retarded Green function G(x′, y′, x, y, EF ) of the
structure onto the transverse modes

χm(y) =

√
2

W
sin
(πm
W

y
)

(4)

according to

tnm =
i~2

M
(kmkn)1/2Gnm(x′, x, EF ), (5)

where we have discarded an unimportant phase factor.
The longitudinal wave vector is given by

kn =

(
2M(E − n2E0)

~2

)1/2

. (6)

The expression (3) has to be evaluated with x in the in-
coming and x′ in the outgoing lead. For the amplitude of
reflection one finds the corresponding expression

rnm = −δnm +
i~2

M
(kmkn)1/2Gnm(x′, x, EF ). (7)

with x and x′ in the incoming lead.
The transmission and reflection amplitudes can be ob-

tained numerically by means of the recursive Green func-
tion method [20,21]. This method uses a discretized ver-
sion of the cavity and calculates the Green function by

starting from the exact Green function in one of the leads
and successively building up the solution by means of the
Dyson equation.

Alternatively, a semiclassical approach to transport
can be developed from the semiclassical path-integral form
of the Green function leading to a transmission amplitude
[12]

tnm = −

√
2πi~
2W

∑
s(n̄,m̄)

sgn(n̄)sgn(m̄)

√
D̃s

× exp

(
i

~
S̃s(n̄, m̄, EF )− i

π

2
µ̃s

)
, (8)

given as the sum over classical trajectories s between the
entrance and exit cross sections with incoming and out-
going angles θ and θ′ such that sin θ = m̄π/kW and
sin θ′ = n̄π/kW (m̄ = ± m, n̄ = ± n). The reduced

action S̃ is the Legendre transform of the action integral
S,

S̃(n̄, m̄, EF ) = S(y′0, y0, EF ) +
~π
W

(m̄y0 − n̄y
′
0), (9)

where the starting and end points of the trajectory, y0 and
y′0 respectively, are determined by the angle quantization.
For billiards S/~ = kL, where L is the length of the tra-

jectory. The amplitude is D̃ = (Mv| cos θ′|)−1|(∂y/∂θ′)θ|
and µ̃ is the Maslov index. A similar expression holds for
the reflection amplitude, with the difference that now the
trajectories start and end in the same lead.

Direct comparison between the semiclassical ampli-
tudes (or the conductance) and the exact counterparts
is rather difficult since the expansion (8) includes an in-
finite number of terms associated with an exponentially
large number of contributing classical trajectories. How-
ever, as in the case of the trace formula, the validity of the
semiclassical approach can be established by identifying
the Fourier components of tnm with classical trajectories.
This has been done in reference [15] and we verify it in our
system since it gives the starting point of our analysis.

In Section 2 we present the numerical calculation of
the reflection amplitude and its interpretation in terms
of classical trajectories without and with a high barrier.
In Section 3 we consider the influence of a tunnel barrier
on the different trajectories contributing to the reflection
and transmission amplitudes and find a nonmonotonic be-
haviour. This behaviour is modeled in Section 4 within a
modification of the semiclassical transmission amplitudes
that includes tunneling in a very simple way. In Section 5
we consider a similar analysis for the transmission and re-
flection coefficients, and show that the analysis becomes
considerably more involved since we now have to deal with
pairs of trajectories. In the final section we present our
conclusions and discuss the extension of our work to the
case with magnetic field.

2 Identification of classical trajectories

In Figure 2 we present the (exact) total reflection coeffi-
cient together with the contribution from the lowest mode
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Fig. 2. Total reflection of the circular billiard and the squared
modulus of r11 as a function of the Fermi momentum. For
1 < kW/π < 2, both reflection coefficients coincide as there is
only one propagating mode.

Fig. 3. Length spectrumR11 for (a) the case without a barrier
and (b) with an infinitely high barrier. Lengths are scaled to
the radius R of the circle. In the absence of a barrier we identify
the peaks in the length spectrum with periodic trajectories.

|r11|2. Obviously, for 1 < kW/π < 2 the two quantities co-
incide since there N = 1. In order to identify the classical
trajectories we carried out a discrete Fourier transforma-
tion of 600 values of the complex reflection amplitude r11

calculated over a momentum interval ranging from 1 to
7π/W . The ratio between the radius R of the circle and
the width W of the leads was in all calculations taken to
be R/W = 3.

The semiclassical form (8) of the transmission ampli-
tude implies that its Fourier transform with respect to the
momentum k = (2MEF /~2)1/2 should exhibit peaks at

lengths L corresponding to the contributing classical tra-
jectories. Similarly, the reflection amplitudes can be inter-
preted in terms of classical paths. For a detailed analysis
we now consider the power spectrum of r11 with respect
to length. This quantity, which is shown in Figure 3a, is
given by the squared modulus of the Fourier transform of
r11 and will be denoted as R11(L) in the following.

In complete agreement with reference [15], we can es-
tablish a correspondence between peaks of R11 and the
classical trajectories including their repetitions. The first
peak is not a classical trajectory contributing to reflection,
but corresponds to diffraction off the lead mouths [13,15].
This effect can be interpreted in terms of a trajectory that
gets reflected back at the right lead. For larger lengths L,
we can identify a triangular path, a five-star path, a seven-
star path, and so on. In agreement with the semiclassical
quantization of the initial and final angle, the star-shaped
paths are the most important ones for small mode num-
bers which favor the forward direction.

The resolution of the length spectrum is limited by
the width of the momentum interval used for the Fourier
transformation. While this can easily be controlled, there
are also intrinsic effects restricting the resolution. Within
a semiclassical picture, at given energy and mode num-
bers the angle quantization selects the appropriate paths.
Depending on the width of the leads, the transverse posi-
tion of the starting and end points in the leads are variable
and therefore a given type of trajectories exists in a certain
momentum interval. In the Fourier transformation these
trajectories will contribute with different weights since the
corresponding action will depend on the momentum, thus
yielding a finite resolution. Already the fact that a type
of trajectory effectively contributes only in a finite mo-
mentum interval may limit the resolution more strongly
than the finite interval imposed by the numerics. In this
respect it is also important to note that quantum mechan-
ical diffraction effects at the lead mouths [13,15] influence
the effective momentum interval and may be relevant for
the resolution.

Placing a sufficiently high barrier into the cavity yields
a reflection coefficient (not shown here) uncorrelated to
that presented in Figure 2. On the other hand, we ex-
pect that individual trajectories would be greatly altered
by the barrier and thus we analyze the length spectrum
R11(L, Vb) as a function of the barrier height. For very
high barriers one can see in Figure 3b that new length
scales have appeared rendering the identification more in-
volved as compared to the case of vanishing barrier.

Some features are easily explained like the appearance
of a peak at length 2R, while in the absence of a barrier the
minimum length is 4R. In the presence of a high barrier,
the direct path may get reflected at the barrier thus lead-
ing to a peak at half of the previous minimal length. The
peak at 4R now consists of two contributions, namely the
direct path which is reflected at the right lead and twice
the direct path reflected at the barrier which involves a
reflection at the left lead mouth. The hierarchy continues
with a smaller peak at about 6R which stems from three
repetitions of the direct path reflected at the barrier.
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Fig. 4. The triangular path in the circular tunneling billiard
may follow the dotted triangle or its mirror image shown as
dashed-dotted line. a) Trajectory (solid line) which is trans-
mitted at the barrier and contributes to the reflected trajecto-
ries in the billiard. b) Trajectory (solid line) which is reflected
at the barrier and therefore contributes to the transmission
through the billiard.

In principle, it is not clear that an analysis in terms
of classical paths is applicable for arbitrary barrier height
since tunneling necessarily implies non-classical trajecto-
ries. However, we will show that such an analysis is still
possible and helpful towards the understanding of the
transport problem. For instance, comparison between Fig-
ures 3a and b shows a large suppression of the harmonic
coming from the triangular path, while the five-star path
component is much less affected. Simple arguments given
in the next section explain this difference in behaviour.

3 Paths in the presence of a tunnel barrier

For a semiclassical analysis of the energy-dependent trans-
mission and reflection spectra, we first have to discuss how
the classical paths are modified by the barrier. The cases
where well-defined classical paths exist, are those of the
circular billiard (Vb = 0) and the circular billiard with a
very high barrier (Vb =∞). While postponing a more de-
tailed analysis to Section 4, we expect that at intermediate
barrier heights, the transmission and reflection amplitudes
for the billiard should be given by both classes of trajecto-
ries properly weighted according to the transmission and
reflection coefficients of the barrier. The length spectrum
of the reflection amplitude, referred to as reflection spec-
trum in the following, of the circular billiard shown in
Figure 3a displays distinct peaks which can be associated
with a triangle, a five-, and a seven-star. In the following
discussion we will focus on these three trajectories.

We start with the triangular path as the simplest case.
In the absence of a barrier, the trajectory just follows the
triangle as shown in Figure 4a. As the barrier height Vb
is increased the transmission probability through the bar-
rier decreases and for high barriers the original triangle
is no longer a possible path. Accordingly, the peak in the
reflection spectrum corresponding to the triangle will de-
crease in amplitude with increasing barrier height. For suf-
ficiently large Vb, the possibility of reflection at the barrier
has to be taken into account. As a consequence of this re-
flection the path will no longer continue on the original
triangle shown as dotted line in Figure 4 but follow, at
least for sufficiently thin barriers, the dashed-dotted line
obtained as mirror image with respect to a vertical line
through the barrier. It is important that this path has

Fig. 5. Variation of the peak height in the length spectrum
for the triangular path as a function of the barrier height Vb.
The diamonds and triangles correspond toR11 and T11, respec-
tively. Both quantities are normalized with respect to R11(0),
i.e. the case of vanishing barrier.

Fig. 6. Four different classes of paths related to the five-star:
paths with two transmissions or two reflections at the barrier
(a and d) contribute to the reflected trajectories in the billiard
while paths with one transmission and one reflection at the
barrier (b and c) contribute to the transmission through the
billiard.

the same length as the original path. However, now the
end point no longer lies in the entrance lead but in the
opposite lead and thus the path reflected at the barrier
will contribute to the transmission through the billiard.
Correspondingly, the triangle will become more impor-
tant in the transmission spectrum as the barrier height
is increased. This qualitative discussion is confirmed by
the numerical results for the reflection and transmission
spectra, R11 and T11, shown in Figure 5 as diamonds and
triangles, respectively.

While the triangular path cannot appear in the reflec-
tion spectrum for very high barriers, it is interesting to
note that there is a peak at a length corresponding to
two repetitions of the triangular path. This can readily
be verified by comparing Figures 3a and b. While one re-
flection at the barrier changes the exit lead from the left
to the right, an additional reflection restores the left lead
as exit lead. Therefore, the peak can be identified with
two repetitions of the path shown in Figure 4b including
a reflection at the right lead due to diffraction at the lead
mouth.
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Fig. 7. Variation of the peak height in the length spectrum
for the five-star trajectory as a function of the barrier height
Vb. The diamonds and triangles correspond to R11 and T11,
respectively. Both quantities are normalized with respect to
R11(0), i.e. the case of vanishing barrier. The solid and the
dotted line give the results of a semiclassical calculation taking
into account tunneling through the barrier.

The behaviour of the five-star trajectory is more com-
plex due to the fact that it crosses the barrier twice. Mak-
ing use of the same geometrical arguments as for the trian-
gle, we may distinguish four different classes of trajectories
shown in Figure 6 which correspond to two transmissions
at the barrier (a), one reflection and one transmission (b
and c), and two reflections (d). In fact, since the trajec-
tory may either start into the upper or lower half of the
billiard, these four classes correspond to eight different tra-
jectories which can be obtained by reading the diagrams
in the forward and backward direction.

Like for the case of the triangle, a reflection at the
barrier changes the sense of rotation in the circle thereby
changing the exit lead. As can be seen from Figure 6,
the paths with an even number of reflections (a and d)
contribute to the reflected paths through the billiard while
the paths with an odd number of reflections (b and c)
contribute to the transmission through the billiard.

Let us first consider the trajectories contributing to the
reflection. The trajectory (a) will only contribute for small
barrier heights because it has to be transmitted through
the barrier twice. On the other hand, the trajectory (d)
will appear only for rather high barriers since it requires
two reflections at the barrier. As a consequence, we expect
that the peak in the reflection spectrum corresponding to
the five-star trajectory will exhibit a minimum at inter-
mediate barrier heights where none of the trajectories (a)
and (d) contribute significantly. The other trajectories (b
and c) appear in the transmission spectrum at interme-
diate barrier heights because they have to be reflected as
well as transmitted once at the barrier.

We conclude from the discussion of the five-star tra-
jectory that in general the dependence on barrier height of
the peak heights in the transmission and reflection spectra
should be nonmonotonic. This is confirmed by the numer-
ical data shown as diamonds (R11) and triangles (T11) in
Figure 7. The lines shown there are results of a semiclas-
sical analysis which will be discussed in detail in the next
section.

Fig. 8. Same as in Figure 7, but for the seven-star trajectory.

For this nonmonotonic behaviour it is crucial that the
reflection of a classical path at the barrier does not change
the length of the trajectory. Only then a change in the
barrier height will not affect the position of the peak and
contributions of different paths have to be coherently su-
perposed.

The behaviour of the peak heights becomes more com-
plex as the trajectories encounter the barrier more often.
This will become clear from our final example, the seven-
star trajectory. In this case, the trajectory encounters the
barrier three times giving rise to eight classes of trajecto-
ries. We may classify these trajectories according to their
behaviour at the barrier by assigning a T or an R for each
transmission or reflection, respectively. Then, the paths
contributing to the reflection spectrum are those contain-
ing an even number of R, namely TTT, RRT, RTR, and
TRR. While the first trajectory will contribute for very
small barriers, the other trajectories appear only for suf-
ficiently high barriers. At very high barriers none of these
paths is allowed. Accordingly, the peak in the reflection
spectrum associated with the seven-star will initially de-
crease with increasing barrier height, exhibit a minimum
followed by a maximum and then go to zero as the barrier
height becomes very large. This behaviour can readily be
verified by comparison with the numerical results for R11

shown as diamonds in Figure 8.

The behaviour of the transmission spectrum T11 shown
in this figure as triangles can be understood along the
same line of reasoning. The trajectories contributing to
this spectrum are those with an odd number of reflections
at the barrier, i.e. RTT, TRT, TTR, and RRR. Since there
is at least one reflection at the barrier, seven-star trajec-
tories may contribute to the transmission spectrum only
for finite barrier heights. With increasing height there will
be a maximum followed by a minimum and at very high
barriers the RRR-trajectory will contribute.

So far, we have concentrated on trajectories which in
the absence of a barrier contribute to the reflection. The
behaviour of classical paths connecting two different leads,
i.e. paths contributing to the transmission, as a function
of the barrier height is slightly more complex. In this case,
one has to distinguish the paths first going into the up-
per and lower half of the billiard. As an example, we con-
sider the paths shown in Figure 9 which represent one half
of an eight-star. From this figure it becomes clear that
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Fig. 9. Trajectory corresponding to a half of an eight-star
trajectory. a) The trajectory starting into the lower half of the
billiard contributes to the transmission through the billiard
for arbitrary barrier height. b) The trajectory starting into the
upper half of the billiard contributes to the transmission in the
absence of a barrier (left) and to the reflection for high barrier
(right).

depending on the incident angle of the path there will be
an even or odd number of contacts with the barrier. Ac-
cordingly, the path shown in Figure 9a will behave very
much like the five-star which also encounters the barrier
twice. On the other hand, the path shown in Figure 9b
has just one contact with the barrier and its dependence
on the barrier height resembles that of the triangle. As a
consequence, while both trajectories will contribute to the
transmission for low barriers, only one of them (Fig. 9a)
will do so at high barriers. The other path will turn into
a reflected path (right part of Fig. 9b) instead.

This line of reasoning generally applies to trajectories
which are transmitted in the absence of a barrier. Even
though the analysis now becomes more complicated, these
paths also lead to nonmonotonic reflection and transmis-
sion spectra as a function of barrier height. Again an in-
creasing number of contacts with the barrier will lead to an
increasing number of extrema. An example will be shown
in Section 5 where the spectra of the total transmission
are discussed (Fig. 13).

The previous qualitative discussion allowed us to un-
derstand the effect of a tunnel barrier by simple consider-
ation of classical trajectories. In the next section we will
show that a quantitative agreement with the exact calcu-
lations can be obtained within a semiclassical approach
where the possibility of transmission or reflection at the
barrier is incorporated.

4 Semiclassical description of the circular
tunneling billiard

We now want to include tunneling into the semiclassical
picture while remaining rather close to the expression for
the semiclassical Green function (8) in terms of classical
paths. To this end, we multiply the contribution of the
classical paths by amplitudes αt or αr accounting for each

transmission or reflection of the classical path at the bar-
rier.

The treatment of a barrier of finite length in the circu-
lar tunneling billiard represents a rather complicated two-
dimensional problem. However, we may approximately de-
scribe the behaviour of an electron at the barrier as a
plane wave encountering a barrier of infinite length. Then
the problem may be separated into the directions perpen-
dicular and parallel to the barrier and the only parameter
describing the scattering geometry is the incident angle φ.
At this point it is important to note that the sequence
of transmissions and reflections at the barrier matters.
For example the five-star trajectories shown in Figures 6b
and c which, if read from left to right, correspond to TR
and RT, respectively, have different incident angles for the
transmission and reflection events.

For an infinitely long barrier the relevant momentum
component is the one perpendicular to the barrier

k⊥ = k cos(φ). (10)

We now may use the standard results for one-dimensional
barrier penetration to approximate the transmission and
reflection amplitudes by

αt(φ) =
2k⊥k

′
⊥ exp(−ik⊥b)

2k⊥k′⊥ cos(k′⊥b)− i(k2
⊥ + k

′2
⊥ ) sin(k′⊥b)

(11)

αr(φ) = i
k
′2
⊥ − k

2
⊥

2k⊥k′⊥
sin(k′⊥b)αt, (12)

respectively, where

k′⊥ =

(
k2
⊥ −

2MVb

~2

)1/2

(13)

and b is the width of the barrier. Expressions (11, 12) re-
duce to the usual one-dimensional expressions for incident
angle φ = 0.

We emphasize that it would not be sufficient to take
the modulus of αt and αr since in general the contribu-
tions of different paths have to be added up coherently. In
fact, destructive interference of paths is quite important
for the interpretation of the barrier height dependence of
the length spectra. As can be seen from (12), the relative
phase factor between the reflected and the transmitted
path is always ± i. Since changing a reflection at the bar-
rier into a transmission and vice versa will change the exit
lead, two classical paths going to the same exit lead differ
by their behaviour at an even number of barrier encoun-
ters. Therefore, the relative phase factor will be ± 1. In
addition, a reflection at the barrier does not change the
classical amplitude D̃, so that the two paths either inter-
fere perfectly constructive or destructive.

As an example we consider the minimum in the peak
height of the reflection spectrum corresponding to the five-
star shown in Figure 7. There is such a pronounced min-
imum only because the two contributing paths, TT and
RR (cf. Figs. 6a and d), interfere destructively. On the
other hand, R11 is not vanishing at the minimum. This
is due to the fact that the Fourier transformation has to
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be taken over a finite energy interval. Since the barrier
height at which the minimum occurs is energy-dependent,
the minimum of R11 will be smeared out.

For finite barrier width, the phase factors appearing in
the transmission and reflection amplitudes have an addi-
tional effect. The contribution of the barrier region to the
total action of the path will depend on the barrier height
which will result in an effective change of the length of the
trajectory. This becomes more important as the width and
height of the barrier are increased. However, for the pa-
rameters used here, the barrier is thin enough so that the
change in length is below the resolution of the discrete
Fourier transformation. Nevertheless, the peak height is
affected. This may become important for sufficiently high
barriers and cause the decrease in the reflection spectrum
of the five-star (Fig. 7) at large Vb. For high barriers of
finite width slight changes in the scattering geometry with
respect to the ideal geometry for a thin barrier may also
affect the peak height.

We now turn to a more detailed discussion of the quan-
tum mechanical results and those obtained from the semi-
classical approach just introduced. The data are compared
in Figure 7 for the five-star trajectory and in Figure 8 for
the seven-star. In both cases the diamonds and triangles
correspond to the quantum mechanical results forR11 and
T11, respectively, while the solid and dotted lines are the
corresponding semiclassical results with the modifications
described above.

The expressions for the reflection and transmission am-
plitudes (11) and (12) depend on the momentum compo-
nent k⊥ perpendicular to the barrier and the height Vb
and width b of the barrier. The geometry of the classical
path together with the Fermi energy determines k⊥. In
the quantum calculations the barrier was implemented by
increasing on three lattice points the potential to Vb. For
the curves shown in Figures 7 and 8 we used an effective
barrier width of 3.5 lattice spacings.

From Figures 7 and 8 we find, that at not too high
barriers the agreement between the quantum mechanical
data and the semiclassical theory modified for tunneling is
very good. On the other hand, for high barriers deviations
do occur. This seems to be at odds with the fact that in
the limit of infinite barrier the modified theory becomes
equivalent to the usual semiclassical expansion.

A qualitative deviation appears for rather high barri-
ers in the transmission spectrum of the five-star and the
reflection spectrum of the seven-star where the quantum
mechanical data saturate at a finite value. This has been
checked for barriers as high as 703E0. On the other hand,
the semiclassical result decreases to zero since at least one
barrier transmission is needed in order to get a path which
describes transmission through the billiard and has the
length of a five-star. The same holds for paths which de-
scribe reflection at the billiard and have the same length
as a seven-star.

This discrepancy may be explained by paths with
length close to those of the five- or seven-star. As an ex-
ample we consider the five-star for which the reflection
spectrum in the absence of a barrier and the transmission

Fig. 10. Length spectra in the vicinity of the five-star peak.
The dashed line corresponds to R11 in the absence of a barrier
while the full line corresponds to T11 for a high barrier. The
scales for T11 and R11 differ by a factor of three.

Fig. 11. Trajectory appearing in the transmission spectrum
for high barriers at a length close to that of the five-star tra-
jectory.

spectrum for very high barrier are shown in Figure 10
as dashed and solid lines, respectively. The highest peak
of the dashed line indicates the length of the five-star. As
expected, there is no peak at this position in the transmis-
sion spectrum. However, there exists a peak at somewhat
smaller length which is broad enough to yield a contri-
bution at the length of the five-star. The corresponding
classical trajectory is shown in Figure 11. It involves three
reflections at the barrier as well as a reflection at the exit
lead, a quantum mechanical effect [15] already mentioned
above.

These arguments also provide a partial explanation
of the quantitative deviations found for high barriers in
the reflection spectrum of the five-star trajectory and the
transmission spectrum of the seven-star. In addition, as
discussed in the previous section the discreteness of the
Fourier transformation in combination with the change in
path length as a function of barrier height results in an-
other source of discrepancy.

While the agreement between the quantum mechan-
ical and the semiclassical calculation demonstrates that
for prominent peaks like the ones corresponding to the
five- and seven-star the interpretation in terms of classical
paths is possible, the deviations just discussed show that
nevertheless the identification is not necessarily straight-
forward and requires a certain amount of caution. The
dependence of peaks in the length spectrum on the bar-
rier height may be of help in the identification since the
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Fig. 12. Length spectrum of the total transmission T for a
circular billiard without barrier.

number of extrema is related to the number of barrier
encounters of the corresponding classical trajectory.

5 Total transmission and reflection in the
circular tunneling billiard

The scattering amplitudes discussed above should be ac-
cessible to microwave experiments where the “Fermi en-
ergy” can be varied by changing the input frequency. A
barrier could be introduced by placing a dielectric with
a fine slit into the cavity. On the other hand, in trans-
port experiments on ballistic microstructures it is the con-
ductance which is measured. According to the Landauer
formula, equation (2), the conductance through a cavity
is proportional to the total transmission coefficient. Re-
cently, measurements of transport through billiards with
variable Fermi energy have been performed [7,22] so that
it appears feasible to experimentally determine the length
spectrum of the total transmission for the circular tunnel-
ing billiard. Since the semiclassical approaches developed
so far provide a basis for the understanding of quantum
transport, we would like to analyze now the effect of a
barrier on the scattering probabilities.

The analysis for the transmission and reflection prob-
abilities is more difficult than for the amplitudes be-
cause taking the squared modulus makes |tnm|2 depend on
pairs of trajectories. Accordingly, a Fourier transformation
yields peaks at lengths which correspond to differences be-
tween the lengths of two classical paths. Additionally, in
order to calculate the total reflection or transmission, one
has to take into account all scattering amplitudes rnm or
tnm where the mode number is restricted by the Fermi
energy via the maximum mode number N introduced in
Section 1. This will increase the number of different paths
to be considered since at higher mode numbers paths en-
closing a larger angle with the lead axis become relevant.

Moreover, when a new mode opens up it starts by
being completely reflected, and the reflection coefficient
jumps by one. This staircase effect will introduce high
harmonics in the reflection coefficient which are not re-
lated to classical trajectories. Therefore we will focus our
attention on the total transmission coefficient T .

Fig. 13. Variation in the peak height of the transmission spec-
tra T (diamonds), T 11 (triangles), and T 22 (stars) at L = 4.1R
as a function of the barrier height Vb. The data is normalized
to the respective values at Vb = 0. The joining lines are guides
to the eye.

As an example, the length spectrum of T for the cir-
cular billiard without barrier is shown in Figure 12. Due
to the large amount of possible length differences the
spectrum is quite complex. Most of the peaks correspond
not only to one pair of trajectories but to a combination
of several pairs of approximately the same length differ-
ence. For example the highest peak, which is found at
L = 4.1R, contains contributions of four different trajecto-
ries, namely a half of an eight-star (cf. Fig. 9), of a twelve-
star, a sixteen-star, and a twenty-star. From these trajec-
tories, three length differences, 4.20R, 4.10R, and 4.06R,
can be constructed which are all quite close to L = 4.1R.
In principle, higher-order stars lead to further length dif-
ferences in the same range. However, their contributions
are negligible. Since the resolution of our discrete Fourier
transformation is 0.1R and the typical peak width is twice
as large (cf. Fig. 3), the contributions from the different
combinations of trajectories cannot be resolved.

Given the complexity of the length spectrum, we may
ask the question of whether the inclusion of a barrier can
be treated as a perturbation that simply randomizes the
phases of the contributing trajectories as do shape dis-
tortions [9,23,24] or magnetic field changes [4,12]. Our
analysis in the previous sections suggests that this is not
the case. The inclusion of a barrier has the effect of sup-
pressing the contribution from certain trajectories while
increasing that of the symmetry related ones, resulting in
the nonmonotonic behaviour of the peaks in the length
spectrum as a function of the barrier height which cannot
be interpreted as conductance fluctuations.

In Figure 13 we present the dependence of the length
spectrum on the barrier height for the total transmission
coefficient as well as two individual probabilities, |t11|2

and |t22|2. In the following, these spectra are referred to
as T , T 11, and T 22, respectively. The data is given for the
peak at L = 4.1R to which several paths contribute as
discussed above.

The nonmonotonic behaviour resulting from the de-
pendence of the individual trajectories (of the contributing
pairs) on Vb illustrates the interplay between semiclassics
and tunneling. The fact that T as well as T 11 and T 22
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roughly exhibit the same structure implies that the same
pairs of paths contribute to various transmission proba-
bilities provided the momentum interval is large enough.
Of course, predicting the peak height dependence as we
did for the scattering amplitudes is more difficult since
the relative weight and the phases of the trajectories of
the contributing pairs become relevant. We therefore do
not attempt to attain the agreement of Section 4.

Instead, we will give a qualitative explanation for the
difference between T 11 and T 22. With growing number
of reflections at the circle, the incident angle of the half-
star trajectories decreases, thus suppressing the contribu-
tion of the higher-order stars, especially to T 22. Since the
higher-order stars lead to more extrema in the Vb depen-
dence, the number of extrema of T 22 should be smaller
than that of T 11. This is consistent with the numerical
results of Figure 13. The number of extrema suggests that
the dominant contribution to T 22 stems from the combi-
nation of one half of an eight- and of a twelve-star. One
half of a sixteen-star should yield a contribution with a
second minima for which there is no clear indication. On
the other hand, T 11 displays a second broad maximum
which is probably a combination of all the extrema from
higher stars.

Obviously, the experimental resolution is limited and
it would not be possible to observe a length spectrum as
structured as that of Figure 12. In mesoscopic systems
temperature plays two roles. On one hand, it controls
the inelastic processes like electron-electron and electron-
phonon interactions. This results in a cut-off length
beyond which no trajectory should contribute in the
coherent semiclassical expansion (8). The other effect of
temperature is the rounding of the Fermi surface that,
within our semiclassical approach, cuts the large length
differences. Absorption processes in microwave cavities
provide a cut-off length for the description in terms of
classical trajectories, but in state-of-the-art experiments
[3] this characteristic length can be much larger than the
system size.

6 Conclusions

In this work we have studied quantum mechanically and
semiclassically the effect of a tunneling barrier on quan-
tum transport through ballistic cavities. This effect is
most evident in the length spectra, i.e. the Fourier trans-
form of the energy-dependent transmission and reflection
amplitudes of the cavity. We have shown that the peak
heights in the quantum mechanical length spectrum ex-
hibit a nonmonotonic variation upon increasing the bar-
rier height. This behaviour is quantitatively reproduced by
combining a semiclassical approach to conductance with
a simple model for barrier reflection and transmission of
paths. The model provides furthermore an intuitive phys-
ical picture of the underlying process leading to the vari-
ations in the peak heights: they reflect the superposition
of coherent contributions from paths being reflected at or
transmitted through the barrier.

This mechanism is a clear-cut manifestation of tunnel-
ing orbits in the conductance of quantum billiards, which
should be in principle observable in experiments. The ef-
fect of the tunnel barrier on individual peaks in the length
spectrum manifests itself in the energy-dependent trans-
mission and reflection coefficients.

We have also performed a corresponding analysis of
the effect of a tunnel barrier on the area spectrum, the
Fourier transform of the magnetic field dependent trans-
mission at fixed Fermi energy. However, in that case a
semiclassical analysis of the quantum mechanical results
is more involved for two reasons: Firstly, the areas of the
trajectories are no longer unchanged by a reflection at the
barrier. Increasing the barrier height leads to a shift of the
spectrum to small areas [9,17]. Secondly, in order to obtain
well-resolved peaks in the area spectrum one has to per-
form the Fourier transformation over a rather large range
of magnetic fields. Then, the condition that the cyclotron
radius is much larger than the system size is no longer ful-
filled in our numerical calculations and the shapes of the
trajectories become field-dependent. This leads to broad-
ening and thus to a severe restriction of resolution. For
high magnetic fields one may even find splitting of the
peaks in the area spectrum. Hence in most cases it will
be hard to unambiguously identify peaks in the area spec-
trum.

Low-frequency structure has been obtained in the
(non-averaged) experimental area spectra of ballistic mi-
crostructures [4,9]. The observed peaks correspond to ar-
eas close to those of the shortest periodic orbits. How-
ever, a clear identification between peaks and trajectories
has not been possible to establish. As discussed above the
analysis becomes quite difficult when pairs instead of sin-
gle trajectories are involved. Thus, a certain amount of
caution has to be exerted for a detailed interpretation in
terms of classical trajectories.

We have shown that the length spectrum admits a sim-
ple semiclassical analysis, even in the presence of tunnel-
ing. In view of microwave experiments [3] as well as re-
cent work on cavities in two-dimensional electron gases
[22] which has demonstrated the possibility of measuring
length spectra, it seems feasible to experimentally verify
the nonmonotonic dependence on the barrier height dis-
cussed here.
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